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This paper describes HYCONES a tightly-
coupled Hybrid Connectionist Expert System that
integrates neural networks with a symbolic
approach (frames). The symbolic paradigm
provides rich and flexible constructs to describe
the domain knowledge, while the connectionist
one provides the system with learning
capabilities. The paper describes the architecture
of the system, focusing on the hybrid aspects of
the knowledge base and on its automatic
knowledge acquisition technique from a case
database. The first validation of the system is
presented. At the end, a comparison with related
research efforts and future developments are
discussed

INTRODUCTION
Connectionist systems attract increasing interest
for their inherent learning abilities. They have
been used in the development of Expert Systems
(ES), in an attempt to incorporate learning
capabilities and to automate the Knowledge Base
(KB) construction through the use of training
examples[l,2]. Connectionist systems offer an
efficient solution to learning and to automatic
knowledge acquisition. However, once the neural
network has been trained to perform a particular
task, the knowledge represented in the network
sinks into a mass of conmection weights, making
it difficult to understand and deal with the
knowledge hidden in the intermediate layers. This
feature hinders the explanation of the reasoning
and blocks the explanation capabilities of these
systems.
Hybrid connectionist expert systems were,
therefore, proposed. In these hybrid architecture,
the symbolic and the connectionist paradigms are
integrated, one supporting the other. The
symbolic paradigm can be used to increase the
semantics of the stored knowledge, simplifying its
manipulation and comprehension. The
connectionist paradigm, on the other hand, offers
the necessary resources for knowledge acquisition
and refinement.
This paper describes HYCONES, a tightly-
coupled Hybrid Connectionist Expert System that
integrates the formalism of frames with a
particular connectionist model [3]. HYCONES is

an enhancement of an already existing hybrid
system - NEXTOOL, that combined neural and
semantic networks [4J. HYCONES brings en-
hancements to NEXTOOLS' hybrid model by
creating a new knowledge representation scheme
based on the use of a frames mechanism, which
provides richer and more intuitive constructs for
the domain description. The following section
describes the architecture of the system,
presenting the frames and the connectionist
models employed, and the integration of the two
paradigms, detailing the mapping of concepts
between neural networks and frames. The Im-
plementation section presents details about the
implementation. The Validation section describes
the first validation of the prototype. The Conclu-
sion depicts the main contributions of this work
and proposes further developments.

HYCONES' ARCHITECTURE
HYCONES has the following basic architecture
(Fig 1):

(1)The Hybrid Knowledge Base (HKB) that
consists of a combination of a frames
mechanism with neural networks; (2) the
Inference Machine (IM) that controls the
inference process through the activation of the
neural networks whenever the evidences are not
enough for the NN to reach a conclusion, the
inference process continues with the pattern-
matching mechanism in the symbolic part of the
knowledge base; (3) the Learning Machine
(LM) responsible for the inductive and
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deductive learning features of the system.
Learning is achieved through the training and
reorganization of the neural networks, and on
the consequent modification of the stored
frames; (4) the Case Database (CD) -
respQnsible for the storage of all classification
problems correctly solved. These correct
classifications are used by the learning machine
as the training examples for the HKB
refinement .

The Frames Model
HYCONES' frames formalism provides
constructs that allow the knowledge engineer to
describe the domain knowledge according to the
four classical abstraction concepts: generaliza-
tion, classification, aggregation, and association
151. The main objective of the symbolic
component is to offer a structure to represent
knowledge to solve classification problems. The
application domain chosen for HYCONES was
the diagnoses of the most frequent congenital
heart diseases defects, as detected in the patients'
database from the Institute of Cardiology RS
(ICFUC). This decision was made basically
because the knowledge acquisition for this
domain had already been completed by a
previous work [71 and it was possible to go
straightforward to the implementation. To
represent this type of knowledge, two different
frames structures were defined: Diagnosis and
Finding frames. The hiierarchy offinding-frames
uses the abstraction concepts to describe the
objects of the application that influience the
detection of certain diagnoses. The abstraction
mechanism of aggregation was largely employed
to group semantically connected classes of
findings .
The diagnosis-framnes represent the
classification problems, whose structure is
similar to the disease profile frames, as defined
in the INTERNIST/QMR system [61. One
additional slot was defined, to describe the
triggering of the diagnosis, as detailed below:
Trigger: references a findling-framne that, when
present, singles out the diagnosis-framne as a
potential solution to the problem;
Essential Findings: contains a list of finding-
frames that must be present to assure the
diagnosis identification;
Complementary Findings: contains a list of
finding-frames that might be present to increase
the confidence oni the diagnosis;

Negative Findings: contains a list of findings
that can eliminate the diagnosis from the set of
possible ones.
Through this Findings and Diagnosis structure,
the symbolic component of the HKB is able to
comprehenisively represent the application
doniain. Wliile the findings hierarchy describes
the declarative aspects of the domain
knowledge, the diagnoses hierarchy stores the
possible solutions for the addressed problems.

The Connectionist Model
The same knowledge described in the diagnoses
hierarchy is also represented in the neural
networks. The adopted connectionist model is
the Combinatorial Neural Model (CNM) [2],
which was inspired on a previous paper
proposing a knowledge acquisition methodology
that generated knowledge graphs (KGs),
described as minimiially directed AND/OR
acyclic graphs, representing experts' knowledge
on a specific diagnostic hypothesis. 17,81. The
neural network presented in FIG. 2 depicts the
basic structure of the CNM.

FIG 2. CNM Basic Structure
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The neural network has a feed-forward
topology with three or more layers. The input
layer is formed by fuzzy-number cells. These
fuzzy numbers, with values in the interval (0,1),
represent the degree of confidence the user has
on the information he observes and inserts into
the neural networks. Cells in different layers are
linked by conmections with an associated weight
that represents the influence of lower layer cells
on the output of upper layer cells.
The connections of the input layer can be either
excitatory or inhibitory. An excitatory
connection propagates the arriving signal using
its weight as an attenuating factor. An inhibitory
connection perform the fuzzy negation on the
arriving signal X. transforming it in 1-X. The
connection then propagates the signal,
multiplying the value obtained (1-X) by the
coinnectioni weight. The comibiinatorial layers are
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formed by hidden fuzzy AND-cells. They
associate differenit input cells in intermediate
"chunks" of knowledge which are relevant for
the diagnosis. The output layer is formed by
fuzzy OR-cells, representing the degree of
possibility of each hypothesis. They implement a
competitive mechanism between the different
pathways arising from the lower layers. Fuzzy
Logic was employed in this neural network
model as a way of describing quantitively the
experts' knowledge represented in the KGs[8J.

Integrating Neural Networks with Frames
The correspondence between the structures of
the connectionist system and the frames
mechanism is based on the mapping of the KGs
into the neural networks and diagnosis-frames.
FIG. 3 shows a KG for the diagnosis of
Atrioventricular Septal Defect (AVSD) and its
translation into a CNM network and the
corresponding diagnosis-frame.

FIG. 3 Mapping of a KG to the neural
network and to the diagnosis frame
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leading the diagnosis conclusion is represented
in a similar pathway in the neural network. This
model of integration of symbolic and
connectionist paradigms is classified as tightly-
coupled [9]. Both connectionist and symbolic
components share tasks and use resident
memory structures to communicate. The tasks
assigned to the connectioniist component are the
inference process, the inductive and deductive
learning procedures, and the automatic
knowledge base (KB) construction. The
symbolic component is responsible for the KB

consultation and for the explanationi of the
reasoning.

The Inference Engine
The inference process starts after the collection
of findings from the environment. These
findings correspond to the inputs of some of the
HKB's neural networks. The networks are
therefore activated, pointing to some diagnoses
as potential solutions to the problem. The
negative properties in the frames work as a
strong inhibitory factor, that is, if they appear as
an evidence, the neural networks probably will
not select that frame. During the inference,
several frames can be selected. Each of them
will carry an evidential factor obtained from the
respectively triggered neural networks. The
neural network showing the highest evidential
factor will be the final solution. However, this
value must be higher than a minimum degree of
conifidence (threshold) previously defined. In
case there are not enough evidences to identify
the frame that solves the problem, the system
requests further information from the user,
based on the list of findings that appear in the
compleinentary-findings slot of the selected
diagnosis-frames. After that, the new given
evidences are delivered to the connectionist
inference mechanism. At the end of this cycle,
the system provides a complete explanation of
its reasoning.

The Learning Machine
HYCONES' learning machine is divided in 2
main components, one based on the
connectionist approach, and responsible for
inductive learning, and the other based on a
technique similar as the recombination operator
of genetic algorithms, responsible for deductive
learning [101. Inductive learning is achieved by
building classification concepts (trained neural
networks) through the repetitive observation of
regular patterns (training examples). A pruning
method is responsible for the removal from the
networks of all connections whose weights are
lower than a pre-set threshold. Any modification
in the structure of a particular neural network
implies in a subsequent change in the
corresponding diagnosis-frame.
Deduction is here seen rather in the sense of a
derivation of new concepts from something
known than in the sense of a formal logic
operation. Deductive learning is achieved
through the use of a technique similar to the
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recombination operator of genetic algorithms.
This method imposes fuirther modifications in
the neural network topology, creating or
restoring connections between neuirons. To
create these new elements, the deductive
learning method combines and changes the
building blocks of the classifiers used in the
system. By doing this, the neural networks
connecting certain evidences to the
corresponding hypothesis can be restructured,
generating new possibilities for the solution of
old problems. These new pathways are then
reinforced or weakened by the punishment and
reward algorithm, and finally destroyed by the
pruning mechanism, keeping new and useless
pathways out of the HKB.

Implementation
HYCONES was implemented in LISP
environment using Goldworks III, for a PC 486.
It demands at least 8 MB RAM memory. The
implementation followed the object-oriented
paradigm. All frames and neural networks were
implemented as objects. Functions were defined
as methods and incorporated in the
corresponding objects. The Lisp enviroiunent
was easy and friendly to work with, although
sometimes slow. The neural network training
from the case database took about 8 hours of
CPU.

The Interface and the Case Database.
The symbolic component of the HKB consists of
two different ypes of knowledge: knowledge
about the domain and knowledge on how to
solve the diagnostic problem. The first type of
knowledge was represented in the hierarchy of
findings frames and consists of a semantic
model of history, physical examination, CXR
and ECG findings of the congenital heart
diseases (CHD) domain. This work relied on the
assistance of a CHD expert and started from a
list of symptoms, signs, CXR and ECG findings
related to this context, already available from a
previous work on knowledge acquisition on this
domain[ 71.
Knowledge on how to diagnose, represented by
the diagnosis-framne hierarchy, enters the system
by two different miiodules: manual and auto-
matic. In the manual method, the knowledge-
engineer enters with the KG for each diagnosis.
In the automatic mode, a case database is
supplied to the system. After the case database is

complete, the learning process starts and
automatically creates the corresponding
diagnosis-frame for each diagnosis. Inductive
and deductive techniques are used to train the
neural networks.
To create the case database for HYCONES, the
three more frequent isolated congenital heart
diseases diagnoses, from patients operated
between 1986 to 1990, were retrieved from the
surgical database of the Institute of Cardiology
of RS: ASD - atrial septal defect, VSD -
ventricular septal defect and AVSD -

atrioventricular septal defect. Sixty-six patients
were randomly selected from the database: 22
with ASD, 29 with VSD and 15 with AVSD
diagnosis. The patient's history, physical
examination, CXR and ECG findings were
extracted from the medical files and became the
evidences of the case database. For each finding
extracted from the patients' file there was a
corresponding findings-frame, previously
defined in the symbolic component of the HKB.
This trained case database gave origin to the
first version of the 1KB, named for validation
purposes Bi.
In addition to the case database, the mean KG
of experts and non-experts, from the same three
diagnosis above mentioned, were previously
elicited by a knowledge acquisition
methodology, described in [7]. The mean KG
represents the consensus knowledge obtained
from multiple expert's graphs on a specific
problem domain 18]. The second version of the
HKB, named B2 for validation purposes,
contains the mean KG of the experts, while the
third version of HKB, named B3, carries the
mean KG of the non-experts. After that, the
hybrid knowledge bases B2 and B3 were
submitted to the same learning procedure as the
case database, giving origin to two other
versions of the HKB, named B2T and B3T,
respectively.

VALIDATION
To validate HYCONES performance, 33 cases
were randomly selected, 13 with ASD diagnosis,
10 with VSD diagnosis and 10 with AVSD,
covering the same period, from the same
database that originated the case database. The
cases already included in the case database were
excluded from this selection. These 33 cases
had their patients' histories, physical
examinations, CXRs and ECGs findings as
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evidences offered to HYCONES in its
consultation mode, addressing the five different
knowledge-bases: B1 - the system trained from
the case database, B2 - experts' mean KGs, B2T
trained experts' mean KGs, B3 non-experts'
mean KGs, and B3T trainied non-experts' mean
KGs . The results are in TABLE I below.

TABLE I
HYCONES VALIDATION

Diagn BI B2 B2T B3 B3T

Correct 31 14 26 0 28

Wrong 0 3 0 0 0

Not enough 2 16 7 33 5
evidence

Total 33 33 33 33 33

The validation showed that the HKB trained by
the case database (Bi) presented the best results:
31 out of 33 diagnoses were correctly diagnosed.
The 2 diagnoses on which B 1 had not enough
evidence to conclude were, in fact, not isolated
lesions. One had an ASD and a Pulmonary
stenosis, while the other was a VSD with a se-
vere pulmonary hypertension. The case database
was not trained to recognize either of these two
diagnoses. There was no statistical significance
singling out the performance of B2T, B3T or
Bi. It must be stressed that what is being
evaluated is not the expert's knowledge itself,
but rather the mean knowledge graph extracted
by a specific methodology of kniowledge
acquisition.

CONCLUSION
There are several contributions to single out in
this project: (1) the definition of a mechanism to
integrate the frames paradigm with neural
networks. This integration adds the adaptive
features of neural networks to the symbolic
knowledge representation of the domain,
clarifying what is hidden in the intermediate
layers of the connectionist component; (2) the
specification of a method to acquire kniowledge
to solve a diagnostic problem, based on the
training from a case database. Furthenrore,
based on this training the system is able to
automatically construct the corresponding
symbolic representation of what it has learned;
(3)the manual knowledge acquisition phase,

considered as the bottleneck in the construction
of expert systems, is simplified by the direct
tranislation of knowledge graphs inito the neural
networks and, consequently, into the HKB; (4)
the definition of a strategy to simulate deductive
learning, able to reorganize the knowledge
already stored in the knowledge-base, creating
new concepts through the recombination of the
evidences, improving the system's performance.
The formation of knowledge germs when
grouping the knowledge graphs elicited from
various experts has already been described 17,81.
These knowledge germs represent the most
important heuristic rules used by experts upon
diagnosing cases they are dealing with. The
same behavior was detected in the CNM neural
networks, that is, the formation of the strong
pathways they commonly use to reach a
diagnosis. Even though the first evaluation of
HYCONES was very promising there are still
many improvements to be accomplished.
Functions to better define the semantic
connections in the domain are still lacking,
mainly to cope with the identification of
similarities in medical findings.

REFERENCES

[1I Gallant S. 1. Connectionist Expert Systemiis. Commu-
nications of the ACM New York, 31, 152-169, 1988.
121 Machado R. J. & Rocha A. F. The Combinatorial Neural
Network: a Connectionist Model for Knowledge-Based
Systems. Proceedings of the Third International Conference
IPMtJ - Informnation Processing and Management of
Uncertainity in Knowledge-Based Svstems, Paris, 9-11, 1990.
131 Fikes R. & Kehler T. The Role of Frame-based Reasoning.
Communications oftheACM New York, 28, 904-920, 1985.
[41 Machado R. J. & Rocha A. F. A Hybrid Architecture for
Fuzzy Connectionist Expert Systems. Intelligent Hybrid
Systems. CRC Press Inc, 1992.
[51 Hull R. & King R. Semantic Database Modeling: Survey,
Applications, and Research Issues. ACM Computing Surveys,
19, 201-260, 1987.
[ 6j Miller R. A. et al. Internist-I, An Experimental Computer-
Based Diagnostic Consultant for General Internal Medicine. In:
Reggia J. A. & Tuhrim S. (eds.). Computer Assisted Medical
Decision Making. vol. 2. Nova Yorque:Springer Verlag,1985.
171 Leao B. F. & Rocha A.F. Proposed Methodology for Know-
ledge Acquisition: A Study onl Congeniital Heart Disease Diag-
nosis. Methods of Infomiation in Medicine. 29, 30-40, 1990.
[81 Machado R. J.. Rocha A.F. & Ledo B.F. Calculating the
Mean K;nowledge representationi from multiple experts. In:
Fedrezzi M. & Kacprzkyk J. (eds.). Multiperson Decision
Making ModelsUJsing Fuzzy Sets anid Possibility Theorv. The
Netherlands, Kluwer Academic Publishers, 1990.
191 Medsker L. R. & Bailey D. L. Models and Guidelines for
Integrating Expert Sistemiis and Neural Networks. In:: KandelL
A. & Langholz G. Hybrid Architectures for Intelligent Systems,
CRC Press, 1992.
110)1 Carbonell J. G.. Introduction: Paradignis for Machine
Learning. Artificial Intelligence, 1-9, 1989.

465


